

Инструкция по эксплуатации

Датчик уровня фреонов HBLC-HFC

Для регулирования уровня фреонов в холодильных системах.

Содержание

Инструкции по мерам безопасности	3
Введение	
Принцип измерения	
Конструкция	
Технические характеристики	5
Функционирование	
Примеры установок	
Инструкции по установке	6
Электрическое соединение	7
Руководство по установке	7
Светодиодная индикация	
Калибровка	
Дополнительная информация	10
Декларация соответствия	

Инструкции по мерам безопасности

ВНИМАНИЕ! До начала работ тщательно прочитайте инструкции по эксплуатации! Изучите всю предостерегающую информацию! Монтаж датчика уровня HBLC-HFC требует наличия технических знаний в области холодильного оборудования и электроники. К работе с изделием могут допускаться только лица, обладающие необходимой квалификацией. Технические специалисты должны представлять вероятные последствия неправильной установки датчика и строго соблюдать применимые требования местного законодательства.

При внесении изменений в оборудование утвержденного типа, разрешение на эксплуатацию данного типа оборудования теряет силу. Подключение входов и выходов изделия и комплектующих следует производить только в соответствии с настоящим описанием. Компания НВ Products не несет ответственности за ущерб, причиненный в результате несоблюдения требований, перечисленных выше.

Условные обозначения. В настоящей инструкции используются следующие условные обозначения, напоминающие о мерах по обеспечению безопасности пользователя. Такие условные обозначения всегда размещаются в разделах документа, содержащих необходимую предупреждающую информацию. Пользователь должен внимательно прочитать инструкции о мерах безопасности — особенно, предостережения, и строго придерживаться этих инструкций.

ВНИМАНИЕ! Относится к факторам повышенной опасности или возможным ограничениям выполняемых функций.

ПРИМЕЧАНИЕ! Содержит важную информацию об изделии и практические рекомендации.

Руководитель, ответственный за производство работ, должен обеспечить соблюдение всех обязательных регламентов, принять все возможные меры для предотвращения несчастных случаев, травматизма и материального ущерба.

Предполагаемое использование и условия применения. Датчик уровня HBLC-HFC предназначены для измерения и управления уровнем фреонов. Для использования датчика уровня и контроллера HBLC-HFC в других целях необходимо предварительно получить одобрение специалистов HB-products или Cooltech.

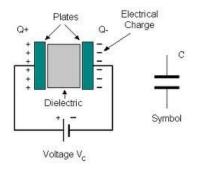
Предотвращение косвенного ущерба. Убедитесь, что устранение любых неисправностей производилось с участием квалифицированного персонала; во избежание косвенного ущерба принимайте необходимые предупредительные меры до начала операций по ремонту и замене частей.

Инструкции по утилизации. HBLC-HFC имеет модульную конструкцию, обеспечивающую удобство разборки и сортировки устройства перед отправкой на утилизацию.

Введение

Датчик уровня фреонов HBLC-HFC является интеллектуальный датчик со встроенным микропроцессором. Он спроектирован для непрерывного измерения уровня в холодильных системах.

Датчик выдает аналоговый сигнал 4-20 мА, который пропорционален уровню жидкости. Конструкция датчика позволяет использовать его в системах с давлением до 150 бар.


Принцип измерения

HBLC-HFC относится к датчикам емкостного типа. Емкостной принцип измерения основан на электрических свойствах материала, расположенного вблизи обкладок конденсатора. Конденсатор — это электрический компонент, способный накапливать и сохранять электрический заряд.

По сути, конденсатор состоит из двух токопроводящих обкладок. Когда одной из обкладок конденсатора сообщается электрический потенциал, другая обкладка приобретает противоположный потенциал, а конденсатор сохраняет заряд до момента заземления обкладок. Кроме других факторов, объем создаваемого заряда (емкость) зависит от вещества, находящегося в пространстве между обкладками

Это вещество имеет свойства диэлектрика.

Обкладки датчиков, применяемых для измерения уровня, выполняются в форме цилиндрического стержня. Когда датчик погружают в жидкость, измеренное значение электрической емкости меняется.

Так как изолирующие свойства материала могут изменяться при изменении температуры, химического состава и степени однородности вещества, заключенного между обкладками, то в разных случаях применения может потребоваться разная заводская калибровка.

Датчики НВ Products калибруются таким образом, чтобы обеспечить возможность их использования в проводящих или диэлектрических жидкостях.

Применяемые в холодильных системах масло, фреоны и жидкий СО2 считаются непроводящими жидкостями, а такие хладагенты как аммиак и рассолы - проводящими.

Конструкция

Датчик состоит из механической и электронной частей. Для разборки датчика достаточно лишь вывернуть 2 резьбовых штифта или, для корпусов с монтажными проушинами, нажать на датчик в направлении механической части и затем повернуть корпус против часовой стрелки, чтобы пружина вытолкнула датчик из позиции установки. Электронный блок датчика разработан в соответствии с требованиями IP65 по водостойкости и защите от вибраций.

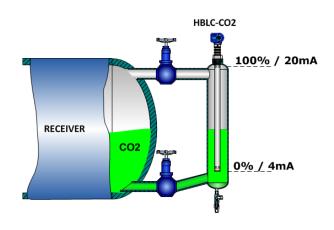
Механическая часть выполнена из материала AISI304/PTFE и испытана на стойкость к высокому давлению.

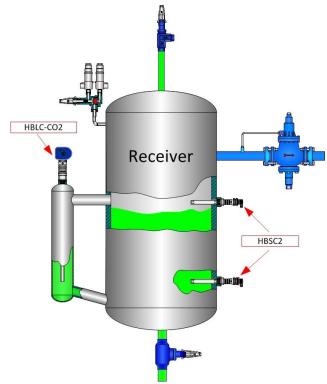
Технические характеристики

Источник питания		
Напряжение	24 В переменного	
	тока / постоянного	
	тока ±10%	
Потребляемый ток	Не более 50 мА	
Тип разъема	М12, 5-контактный	
	DIN 0627	
Выход		
Аналоговый выход	4-20 MA	
Разрешенная	1А (24В постоянного	
нагрузка на	тока)	
потенциально		
ненагруженной		
контактной группе		
Условия эксплуатации		
Температура	от -20°C до +50°C	
окружающей среды		
Температура	от -50°C до +100°C	
хладагента		
Максимальное	150 бар	
рабочее давление		
Водостойкость	IP65	
Вибростойкость	IEC 68-2-6 (4 g)	
Сертификаты		
Электромагнитное	EN61000-3-2	
излучение (ЭМИ)		
Стойкость к ЭМИ	EN61000-4-2	
ГОСТ Р	№ 0903044	

Механические характеристики		
Резьбовое соединение	3/4"	
Материал корпуса –	AISI 304	
механическая часть		
Материал корпуса –	Нейлон 6 (РА)	
блок электроники		
Конструкция корпуса	прямая	
Калибровка и индикаци	1Я	
Калибровка	кнопочная	
Светодиодная	Зеленый, желтый	
индикация	и красный	
Комплектующие		
Кабель питания	Кабель питания,	
	длина 5 м	
HBxC-M12/5	HBxC-M12/10	
Сечение кабеля	5 x 0,34 mm ²	
Сечение кабеля	5 x 0,34 mm ²	
Кабельные сальники	PG7 / M8	
Тип разъема	Угол - 90°	
Тип кабеля	PVC-OB серый	
Переходник BSP с	HBS/ADAP/8/2	
резьбой 1", с		
алюминиевой		
прокладкой		
Моментная отвертка	НВхС для	
	фиксации кабеля	
	питания	
	(0,6 Нм)	

ПРИМЕЧАНИЕ! Все контакты предусматривают защиту от ошибочного подключения к линиям питания с напряжением до 40 В. При случайном подключении к линиям с высоким напряжением (выше 40 В) электронные схемы могут выйти из строя.




Функционирование

Датчик HBLC-HFC является очень точным аналоговым датчиком уровня, предназначенным для непрерывного измерения уровня фреонов в холодильных установках. В качестве дополнения он может служить как датчик высокого уровня, поскольку встроенная функция датчика выдает аварийный сигнал при уровне 100%.

Примеры установок

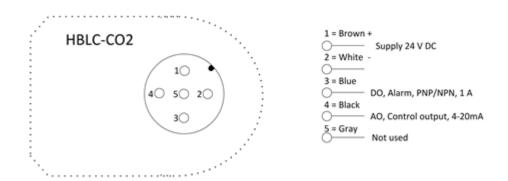
Датчик HBLC-HFC разработан для измерения уровня жидких фреонов в холодильных установках, циркуляционных ресиверах, охлаждающих устройствах и конденсаторах:

Инструкции по установке

При установке датчика необходимо учитывать следующие требования:

- 1) Датчик должен устанавливаться в вертикальном положении
- 2) Датчик HBLC-HFC может устанавливаться в колонке уровня или на другом участке, в местах с минимальной скоростью и турбулентностью потока
- 3) Датчик подключается с помощью стандартного неэкранированного кабеля. При наличии электромагнитных помех, уровень которых превышает значения, указанные в документе EN 61326, для питания датчика следует применять экранированный кабель.

ВНИМАНИЕ! Запрещается производить сварочные работы в системе при установленном электронном блоке датчика. Использование сварки может привести к выходу из строя электронных схем датчика.



ПРИМЕЧАНИЕ! Элементы датчика не должны касаться стенок резервуара или других металлических частей на месте монтажа. В противном случае, сигнал с датчика будет искажен.

Электрические соединения

Датчик должен подсоединяться к источнику питания с помощью 4 жильного провода с резьбой M12. Напряжение питания ограничено 24 В пост. тока.

Руководство по установке

Датчик HBLC-HFC устанавливается на колонке уровня или непосредственно в сосуде. На резьбу наносится прокладочный герметик.

Для установки датчика вы должны использовать торцовый ключ 2,5 мм, разводной гаечный ключ и прокладку в зависимости от типа резьбы.

Ослабьте два установочных винта, которые крепят электронную часть к механической части.

Отделите электронную часть от механической части

Нанесите жидкий герметик или фторопластовую ленту на коническую резьбу

Установите электронную часть в сосуд или колонку уровня и затяните (с вращающим моментом 80-150 Hm)

Установите электронную часть и затяните два установочных винта.

Светодиодная индикация

Светодиодная индикация:

- 1) Зеленый светодиод индицирует наличие питания 24 В пост. тока (мигает во время работы)
- 2) Желтый светодиод связан с калибровкой
- 3) Красный светодиод индицирует аварийный сигнал при уровне 100%

Светодиодный	ВКЛ. / ВЫКЛ./	Функциональность
сигнал	частотность	
Зеленый	ВКЛ.	Питание
	выкл.	Нет питания
Желтый	вкл.	Активируется во время калибровки
	выкл.	Работа в обычном режиме
Красный	ВКЛ.	Сигнал тревоги активируется через 10 секунд после
		возникновения 100% уровня
	выкл.	Нет аварии

Калибровка

Датчик уровня поставляется предварительно откалиброванным для фреонов в соответствии с рисунком "R", представленным ниже и посвященным заводской переустановке и калибровке. Сигнал аварии переустанавливается нажатием клавиши "R" в течение 5 секунд.

Инструкция по калибровке:

Калибровка 0% или 100% может выполняться независимо друг от друга. Мы рекомендуем выполнять калибровку только при 0%, если требуется высокая степень точности.

Инструкции по калибровке 0%:

- 1) Подсоедините кабель питания.
- 2) Слейте содержимое из сосуда/колонки
- 3) Нажмите кнопку "R" на 5 с, чтобы активировать режим калибровки. При нажатой кнопке желтый светодиод должен находится во включенном состоянии (5 с), и затем должен погаснуть при входе в режим калибровки.
- 4) Нажмите "R" однократно. Желтый светодиод должен мигнуть 1 раз. После этого должен замигать зеленый светодиод, подтверждающий, что датчик откалиброван.

В случае если требуется меньший участок измерения, может быть выполнена повторная калибровка.

Инструкции по калибровке 100%:

- 1) Кабель питания подсоединен.
- 2) Заполните сосуд/колонку трубу до уровня 100%.
- 3) Нажмите кнопку "R" на 5 с, чтобы активировать режим калибровки. При нажатой кнопке желтый светодиод должен находится во включенном состоянии (5 с), и затем должен погаснуть при входе в режим калибровки.
- 4) Нажмите "R" дважды. Желтый светодиод должен мигнуть дважды. После этого должен замигать зеленый светодиод, подтверждающий, что датчик откалиброван.

На этом режим калибровки завершается и датчик готов к нормальной работе.

Общий случай:

В случае неисправности достаточно только заменить электронную часть.

ПРИМЕЧАНИЕ! Обнаружение неисправности и/или изменение электронной функции может выполняться без стравливания давления из системы или без разборки механической части датчика.

Обнаружение неисправности

Неисправность	Причина	Исправление неисправности
Ни один светодиод не	Отсутствует питание датчика	Проверьте кабель питания и наличие
горит/ функционирование	или неисправность кабеля	питания
отсутствует	или разъема	
Отсутствует включение	Возможно наличие	Отделите блок электроники от
контакта	загрязнений, попавших	механической части и протрите
	между блоком электроники	пружинящий контакт. Во избежание
	и корпусом механической	воздействия влаги, не забудьте
	части	нанести силиконовую смазку на
		законцовку пружинящего контакта
Задержка включения	Может вызываться	Убедитесь в правильности выбора
датчика	наличием газа или	места для датчика. В месте установки
	образованием пузырьков в	не должны присутствовать пузырьки
	системе	газа
Отсутствует корреляция	Датчик не откалиброван	Выполните калибровку
между выходным сигналом	правильно	
и расстоянием измерения.		

Ремонт датчика.

В случае неисправности датчика обычно требуется замена электронных схем. Договоритесь с дистрибьютором по поводу порядка устранения неисправностей.

Дополнительная информация

Для получения дополнительной информации, пожалуйста, посетите сайт http://www.hbproducts.dk, или направьте электронное сообщение по адресу: support@hbproducts.dk

Декларация соответствия

Мы, компания HB Products A/S, с полной ответственностью подтверждаем следующее:

Категория: Измерительная аппаратура Тип: Датчик уровня типа HBLC-HFC

Описание: Датчик уровня, основанный на принципе емкостного измерения

Произведен: Разработан и произведен компанией HB Products A/S.

Настоящая декларация подтверждает, что изделие соответствует следующим требованиям стандартов:

EN 61000-6-2: 2005 Общие требования к стойкости в отношении электромагнитных

помех (ЕМС) Промышленное оборудование

EN 61000-6-4: 2007 Общие требования к стойкости в отношении электромагнитных

помех (ЕМС) Промышленное оборудование

В соответствии с требованиями Европейской директивы:

Директива по ЕМС......2004/108/ЕС